If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2-500z=0
a = 1; b = -500; c = 0;
Δ = b2-4ac
Δ = -5002-4·1·0
Δ = 250000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{250000}=500$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-500)-500}{2*1}=\frac{0}{2} =0 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-500)+500}{2*1}=\frac{1000}{2} =500 $
| X+2=7-3y | | 3p+-5p+-13=-19 | | x^2+0.125*x+1=0 | | 12x(x+2)−5(2x−1)=0 | | -13x-18=47 | | -5(2x+1)=-2(4x+4) | | 2/3+9x=-24 | | 3x-4+7x+34=180 | | 2(4x÷5-1)=6 | | -3(5-8x)=-159 | | 1/2-5/4=x/5 | | 3(x-9)=2x+39 | | x-33=5/8x | | -7/8x=-4 | | 7x=12x-95 | | 3(x-4)=12-4x+9+15+4x+3 | | 2.5x-6=1.25 | | 42-x-x=90 | | 84=1/2(3x) | | 1x-1x-42=90 | | x-x-42=90 | | x^2-7+13=0 | | 3x=(x+10)+90 | | 24-3x=16-x | | 0.05*8000+0.02x=0.03(8000+x) | | 4t+8-6=0 | | x+3-x-3+x-1=90 | | 12(x-2)+3x=1/2(x+6)÷2 | | x+3+x-1=x+1=90 | | 1/x=×+1/6 | | 25900v=2435 | | 10+5×4=y |